BACKEND TEAM RESPONSIBILITIES

1. API Architecture

Technology Stack Recommendation:

e Node.js + Express (JavaScript - matches frontend)
e ORPython + FastAPI (Better for Al/ML integration)
o OR Java Spring Boot (Enterprise-grade)

API Structure:

/api
/auth

POST /register

POST /login
POST /logout
POST /refresh-token

GET /me

/users
GET /users
GET /users/:id
POST /users
PUT /users/:id
DELETE /users/:id
PATCH

/patients
GET /patients
GET /patients/
POST /patients
PUT /patients/
DELETE /patients/:
GET /patients/
PUT /patients/
GET /patients/
GET /patients/
GET /patients/
GET /patients/

/users/:id/password

:id

:id

id

:id/medical-profile
:id/medical-profile
:id/appointments
:id/medical-records
:1d/prescriptions

:id/invoices

/doctors

GET /doctors

GET /doctors/:id

POST /doctors

PUT /doctors/:id

DELETE /doctors/:id

GET /doctors/:id/schedule

PUT /doctors/:id/schedule

GET /doctors/:id/appointments

GET /doctors/:id/availability
/appointments

GET /appointments

GET /appointments/:id

POST /appointments

PUT /appointments/:id

DELETE /appointments/:id

PATCH
GET

/medical-

GET
GET
POST
PUT

/appointments/:id/status

/appointments/calendar

records

/medical-records

/medical-records/:1id

/medical-records

/medical-records/:1id

DELETE /medical-records/:1id

/medical-records/:id/attachments

/prescriptions/:id/status

POST
/prescriptions
GET /prescriptions
GET /prescriptions/:id
POST /prescriptions
PUT /prescriptions/:id
PATCH
GET /prescriptions/:id/pdf
/radiology
GET /scans
GET /scans/:id
POST /scans

PUT /scans/:1id

POST /scans/:1id/upload
GET /scans/:id/dicom
PATCH /scans/:id/status

/cdss
GET /analysis
GET /analysis/:id

POST /analysis (trigger AI analysis)
PATCH /analysis/:id/review

/billing
GET /invoices
GET /invoices/:id
POST /invoices
PUT /invoices/:1id

DELETE /invoices/:1d

GET /invoices/:id/pdf
/payments
GET /payments

POST /payments
POST /payments/process
POST /payments/refund

/icdl0

GET /codes

GET /codes/ :code

GET /codes/search?g=hypertension
/reports

GET /reports/dashboard

GET /reports/appointments

GET /reports/revenue

GET /reports/patients

2. Authentication & Authorization

A. JWT Token System:

// Login Response
{

accessToken: "eyJhbGciOiJIUzIINiIs...", // 15 min expiry
refreshToken: "dGhpcyBpcyBhIHJ1lZn...", // 7 days expiry
user: {

id: "123",

email: "doctor@heartology.com",

role: "doctor",

firstName: "John",

lastName: "Smith"

B. Role-Based Access Control (RBAC):

// Middleware

const authorize = (allowedRoles) => {
return (req, res, next) => {
if (!'allowedRoles.includes (reqg.user.role)) {
return res.status(403).json({ error: 'Forbidden' 1});
}
next () ;
i
i
// Usage

app.get ('/api/users’',
authenticate,
authorize (['admin']),

getUsersController

) ;

C. Password Security:

e Bcrypt hashing(cost factor: 12)
o Password requirements: 8+ chars, uppercase, lowercase, number, special char
e Account lockout after 5 failed attempts

3. Key APl Endpoints Implementation

A. Login Endpoint

POST /api/auth/login

Request:
{

email: "doctor@heartology.com",

password: "SecurePassl23!"

Response:

{
success: true,
accessToken: "...",
refreshToken: "...",
user: |

id: "123",

email: "doctor@heartology.com",

role: "doctor",
firstName: "John",

lastName: "Smith"

// Frontend will store tokens in localStorage

// Send accessToken in Authorization header:

B. Get Appointments (Doctor View)

"Bearer <token>"

GET /api/appointments?doctorId=123&date=2025-12-06

Response:
{
success: true,
data: |
{
id: "app 001",
patient: {
id: "pat 001",
name: "John Doe",
age: 45,
Ssn: "HEXF_XF_GTEO"

by

appointmentDate: "2025-12-06",

appointmentTime: "09:00",
type: "Check-up",

status: "Confirmed",
reasonForVisit: "Chest pain",

duration: 30

C. Create Medical Record

POST /api/medical-records

Request:
{
patientId: "pat 001",
doctorId: "doc 123",
appointmentId: "app 001",
recordType: "Consultation",
vitalSigns: {
bloodPressure: { systolic: 120, diastolic: 80 },
heartRate: 72,
temperature: 98.6,
oxygenSaturation: 98,
respiratoryRate: 16

b
chiefComplaint: "Chest pain",

subjective: "Patient reports...",
objective: "Physical examination reveals...",
assessment: "Suspected angina",

plan: "ECG ordered, follow-up in 1 week",
diagnoses: [
{ 1cdl0Code: "I20.9", description: "Angina pectoris", isPrimary: true

Response:
{
success: true,
data: {
id: "rec 001",

...requestbhata,

createdAt:

D. Process Payment

POST /api/payments/process

Request:
{

invoiceId: "inv_ 001",
350.00,
paymentMethod:

amount:
"Credit Card",

cardDetails: {

cardNumber: "4111111111111111",
expiryMonth: "12",
expiryYear: "2026",
cvv: "123",
cardholderName: "John Doe"
}
}
Response:
{
success: true,
data: {
paymentId: "pay 001",
transactionId: "txn abcl23",
status: "Completed",
receiptNumber: "RCP-2025-001",
paidAmount: 350.00,
balanceAmount: O
}
}
// Integrate with: Stripe, PayPal,

"2025-12-06T10:30:002"

Square,

or Authorize.

net

4. File Upload & Storage

A. DICOM File Upload:

POST /api/radiology/scans/:id/upload
Content-Type: multipart/form-data

// Use: AWS S3, Azure Blob Storage, or Google Cloud Storage
// Store files with encryption

// Return signed URLs for viewing

B. Storage Structure:

s3://heartology-medical-files/
/patients/{patientId}/
/radiology/{scanId}/
- scan_001.dcm
- scan_002.dcm
/documents/
- insurance card.pdf
- consent form.pdf
/prescriptions/{prescriptionId}/
- prescription.pdf
/invoices/{invoiceId}/

- invoice.pdf

5. CDSS Integration

A. Al Analysis Trigger:

POST /api/cdss/analysis

Request:

{
radiologyScanId: "scan 001",
studyType: "ECG",
dicomFileUrls: ["s3://..."]

Process:

1. Send DICOM files to AI model endpoint
2. AI processes images (2-5 minutes)

3. Return findings with confidence scores
4

Flag for doctor review

Response:
{
success: true,
data: {
analysisId: "cdss 001",
findings: [
"Left ventricular hypertrophy detected",
"ST segment elevation in leads V2-Vv4"
I
confidenceScore: 87,
severity: "High",
recommendations: [
"Immediate cardiology consultation",
"Consider troponin levels"

1,

reviewStatus: "Pending"

B. Al Model Endpoint:

Separate microservice (Python + TensorFlow/PyTorch)

POST https://ai.heartology.com/analyze

Models needed:

- ECG Analysis (Arrhythmia detection)
- CT/MRI Analysis (CAD detection)

- Risk Stratification Model

6. Real-time Features

A. WebSocket for Notifications:

// Socket.io implementation
io.on('connection', (socket) => {
socket.on('subscribe', (userId) => {
socket.join ("user ${userId}’);
b);
})

// Notify doctor when CDSS analysis completes

io.to(user S{doctorId}) .emit ('cdss complete', ({

scanId: "scan 001",
severity: "High",
message: "AI analysis flagged critical findings"

1)

// Notify patient of appointment confirmation

io.to(user S{patientId}).emit ('appointment confirmed', {
appointmentId: "app 001",
date: "2025-12-10",
time: "14:00"

})

7. Security Requirements

A. Data Encryption:

e AtRest: AES-256 encryption for database
e InTransit: TLS 1.3 for all APl calls
e PII/PHI: Additional encryption layer for SSN, medical records

B. HIPAA Compliance:

e Audit logs for all data access

e Automatic session timeout (15 minutes)
e Minimum necessary access principle

e Breach notification system

o Data backup and disaster recovery

C. API Rate Limiting:

// 100 requests per 15 minutes per IP
app.use (ratelLimit ({

windowMs: 15 * 60 * 1000,

max: 100
1))

8. PDF Generation

A. Prescription PDF:

GET /api/prescriptions/:id/pdf

// Use: PDFKit or Puppeteer

// Include:

- Hospital letterhead

- Doctor details and signature
- Patient information

- Medication list

- QR code for verification

B. Invoice PDF:

GET /api/invoices/:id/pdf

// Include:

- Invoice number and date
- Ttemized services

- Insurance breakdown

- Payment history

- QR code for online payment

9. Email Notifications

A. SendGrid/AWS SES Integration:

// Appointment Confirmation
- Send to patient email
- Include calendar invite (.ics file)

- Reminder 24 hours before

// Prescription Ready
- Notify patient when prescription is written

- Include pharmacy instructions

// Involce Generated
- Send invoice PDF

- Payment link

// Lab Results Available
- Notify patient to log in and view

- Security: Never email actual results

10. Reporting & Analytics

A. Dashboard Statistics API:

GET /api/reports/dashboard?role=admin&period=month

Response:

{
totalPatients: 1250,
activePatients: 890,
newPatients: 45,
totalAppointments: 320,
completedAppointments: 280,
revenue: 125000,
pendingInvoices: 15,
averageWaitTime: 12, // minutes

patientSatisfaction: 4.5

B. Revenue Reports:

GET /api/reports/revenue?startDate=2025-01-01&endDate=2025-12-31

// Group by month, service type, doctor, insurance provider
// Export to CSV/Excel

INTEGRATION CHECKLIST

Frontend-Backend Connection:

1. Update API Base URL:

// src/config/api.js
export const API BASE URL = process.env.REACT APP API URL || 'http://loce

2. Create API Service Layer:

// src/services/api.js

import axios from 'axios';

const api = axios.create ({
baseURL: API BASE URL,
headers: {
'"Content-Type': 'application/json'
}
})

// Add token to requests
api.interceptors.request.use((config) => {
const token = localStorage.getlItem('accessToken');
if (token) {
config.headers.Authorization = "Bearer S${token} ;

}

return config;

1)

export default api;

3. Replace Mock Data:

// Before (Mock):

const [patients, setPatients] = useState (mockData);

// After
usekEffect

(Real API):
(0 =>{
api.get ('/patients')
.then (response => setPatients (response.data.data))
.catch(error => console.error (error));

oo L)

IMPLEMENTATION TIMELINE

Phase 1- Foundation (Weeks 1-2)

e Database schema creation
e Basic CRUD APIs for Users, Patients, Doctors
e Authentication system

¢ Frontend-backend connection

Phase 2 - Core Features (Weeks 3-4)

Appointments API
Medical Records API
Prescriptions API

File upload system

Phase 3 - Advanced Features (Weeks 5-6)

Radiology & DICOM handling
CDSS Al integration
Billing & payment gateway

PDF generation

Phase 4 - Production Ready (Weeks 7-8)

e Security hardening
e HIPAA compliance
e Performance optimization
e Testing & bug fixes

e Deployment

DEPLOYMENT ARCHITECTURE

Frontend (React)
| HTTPS
Load Balancer
!
API Servers (Node.]js/Express) [Auto-scaling]
!
Database Cluster (MongoDB/PostgreSQL) [Master-Replica]
!
File Storage (AWS S3)

!
ATl Service (Python/TensorFlow) [Separate]

Hosting Recommendations:

Frontend: Vercel, Netlify, or AWS S3 + CloudFront

Backend: AWS EC2/ECS, Google Cloud Run, or Azure App Service
Database: MongoDB Atlas, AWS RDS, or Azure Cosmos DB

Files: AWS S3, Azure Blob Storage, Google Cloud Storage

