
🔧 BACKEND TEAM RESPONSIBILITIES

1. API Architecture

Technology Stack Recommendation:

Node.js + Express (JavaScript - matches frontend)
OR Python + FastAPI (Better for AI/ML integration)

OR Java Spring Boot (Enterprise-grade)

API Structure:

/api

 /auth

 POST /register

 POST /login

 POST /logout

 POST /refresh-token

 GET /me

 /users

 GET /users

 GET /users/:id

 POST /users

 PUT /users/:id

 DELETE /users/:id

 PATCH /users/:id/password

 /patients

 GET /patients

 GET /patients/:id

 POST /patients

 PUT /patients/:id

 DELETE /patients/:id

 GET /patients/:id/medical-profile

 PUT /patients/:id/medical-profile

 GET /patients/:id/appointments

 GET /patients/:id/medical-records

 GET /patients/:id/prescriptions

 GET /patients/:id/invoices

 /doctors

 GET /doctors

 GET /doctors/:id

 POST /doctors

 PUT /doctors/:id

 DELETE /doctors/:id

 GET /doctors/:id/schedule

 PUT /doctors/:id/schedule

 GET /doctors/:id/appointments

 GET /doctors/:id/availability

 /appointments

 GET /appointments

 GET /appointments/:id

 POST /appointments

 PUT /appointments/:id

 DELETE /appointments/:id

 PATCH /appointments/:id/status

 GET /appointments/calendar

 /medical-records

 GET /medical-records

 GET /medical-records/:id

 POST /medical-records

 PUT /medical-records/:id

 DELETE /medical-records/:id

 POST /medical-records/:id/attachments

 /prescriptions

 GET /prescriptions

 GET /prescriptions/:id

 POST /prescriptions

 PUT /prescriptions/:id

 PATCH /prescriptions/:id/status

 GET /prescriptions/:id/pdf

 /radiology

 GET /scans

 GET /scans/:id

 POST /scans

 PUT /scans/:id

 POST /scans/:id/upload

 GET /scans/:id/dicom

 PATCH /scans/:id/status

 /cdss

 GET /analysis

 GET /analysis/:id

 POST /analysis (trigger AI analysis)

 PATCH /analysis/:id/review

 /billing

 GET /invoices

 GET /invoices/:id

 POST /invoices

 PUT /invoices/:id

 DELETE /invoices/:id

 GET /invoices/:id/pdf

 /payments

 GET /payments

 POST /payments

 POST /payments/process

 POST /payments/refund

 /icd10

 GET /codes

 GET /codes/:code

 GET /codes/search?q=hypertension

 /reports

 GET /reports/dashboard

 GET /reports/appointments

 GET /reports/revenue

 GET /reports/patients

2. Authentication & Authorization

A. JWT Token System:

// Login Response

{

 accessToken: "eyJhbGciOiJIUzI1NiIs...", // 15 min expiry

 refreshToken: "dGhpcyBpcyBhIHJlZn...", // 7 days expiry

 user: {

 id: "123",

 email: "doctor@heartology.com",

 role: "doctor",

 firstName: "John",

 lastName: "Smith"

 }

}

B. Role-Based Access Control (RBAC):

// Middleware

const authorize = (allowedRoles) => {

 return (req, res, next) => {

 if (!allowedRoles.includes(req.user.role)) {

 return res.status(403).json({ error: 'Forbidden' });

 }

 next();

 };

};

// Usage

app.get('/api/users',

 authenticate,

 authorize(['admin']),

 getUsersController

);

C. Password Security:

Bcrypt hashing (cost factor: 12)

Password requirements: 8+ chars, uppercase, lowercase, number, special char
Account lockout after 5 failed attempts

3. Key API Endpoints Implementation

A. Login Endpoint

POST /api/auth/login

Request:

{

 email: "doctor@heartology.com",

 password: "SecurePass123!"

}

Response:

{

 success: true,

 accessToken: "...",

 refreshToken: "...",

 user: {

 id: "123",

 email: "doctor@heartology.com",

 role: "doctor",

 firstName: "John",

 lastName: "Smith"

 }

}

// Frontend will store tokens in localStorage

// Send accessToken in Authorization header: "Bearer <token>"

B. Get Appointments (Doctor View)

GET /api/appointments?doctorId=123&date=2025-12-06

Response:

{

 success: true,

 data: [

 {

 id: "app_001",

 patient: {

 id: "pat_001",

 name: "John Doe",

 age: 45,

 ssn: "***-**-6789"

 },

 appointmentDate: "2025-12-06",

 appointmentTime: "09:00",

 type: "Check-up",

 status: "Confirmed",

 reasonForVisit: "Chest pain",

 duration: 30

 }

],

 total: 5

}

C. Create Medical Record

POST /api/medical-records

Request:

{

 patientId: "pat_001",

 doctorId: "doc_123",

 appointmentId: "app_001",

 recordType: "Consultation",

 vitalSigns: {

 bloodPressure: { systolic: 120, diastolic: 80 },

 heartRate: 72,

 temperature: 98.6,

 oxygenSaturation: 98,

 respiratoryRate: 16

 },

 chiefComplaint: "Chest pain",

 subjective: "Patient reports...",

 objective: "Physical examination reveals...",

 assessment: "Suspected angina",

 plan: "ECG ordered, follow-up in 1 week",

 diagnoses: [

 { icd10Code: "I20.9", description: "Angina pectoris", isPrimary: true

]

}

Response:

{

 success: true,

 data: {

 id: "rec_001",

 ...requestData,

D. Process Payment

POST /api/payments/process

Request:

{

 invoiceId: "inv_001",

 amount: 350.00,

 paymentMethod: "Credit Card",

 cardDetails: {

 cardNumber: "4111111111111111",

 expiryMonth: "12",

 expiryYear: "2026",

 cvv: "123",

 cardholderName: "John Doe"

 }

}

Response:

{

 success: true,

 data: {

 paymentId: "pay_001",

 transactionId: "txn_abc123",

 status: "Completed",

 receiptNumber: "RCP-2025-001",

 paidAmount: 350.00,

 balanceAmount: 0

 }

}

// Integrate with: Stripe, PayPal, Square, or Authorize.net

4. File Upload & Storage

A. DICOM File Upload:

 createdAt: "2025-12-06T10:30:00Z"

 }

}

POST /api/radiology/scans/:id/upload

Content-Type: multipart/form-data

// Use: AWS S3, Azure Blob Storage, or Google Cloud Storage

// Store files with encryption

// Return signed URLs for viewing

B. Storage Structure:

s3://heartology-medical-files/

 /patients/{patientId}/

 /radiology/{scanId}/

 - scan_001.dcm

 - scan_002.dcm

 /documents/

 - insurance_card.pdf

 - consent_form.pdf

 /prescriptions/{prescriptionId}/

 - prescription.pdf

 /invoices/{invoiceId}/

 - invoice.pdf

5. CDSS Integration

A. AI Analysis Trigger:

POST /api/cdss/analysis

Request:

{

 radiologyScanId: "scan_001",

 studyType: "ECG",

 dicomFileUrls: ["s3://..."]

}

Process:

1. Send DICOM files to AI model endpoint

2. AI processes images (2-5 minutes)

3. Return findings with confidence scores

4. Flag for doctor review

Response:

{

 success: true,

 data: {

 analysisId: "cdss_001",

 findings: [

 "Left ventricular hypertrophy detected",

 "ST segment elevation in leads V2-V4"

],

 confidenceScore: 87,

 severity: "High",

 recommendations: [

 "Immediate cardiology consultation",

 "Consider troponin levels"

],

 reviewStatus: "Pending"

 }

}

B. AI Model Endpoint:

Separate microservice (Python + TensorFlow/PyTorch)

POST https://ai.heartology.com/analyze

Models needed:

- ECG Analysis (Arrhythmia detection)

- CT/MRI Analysis (CAD detection)

- Risk Stratification Model

6. Real-time Features

A. WebSocket for Notifications:

// Socket.io implementation

io.on('connection', (socket) => {

 socket.on('subscribe', (userId) => {

 socket.join(`user_${userId}`);

 });

});

// Notify doctor when CDSS analysis completes

io.to(`user_${doctorId}`).emit('cdss_complete', {

 scanId: "scan_001",

 severity: "High",

 message: "AI analysis flagged critical findings"

});

// Notify patient of appointment confirmation

io.to(`user_${patientId}`).emit('appointment_confirmed', {

 appointmentId: "app_001",

 date: "2025-12-10",

 time: "14:00"

});

7. Security Requirements

A. Data Encryption:

At Rest: AES-256 encryption for database

In Transit: TLS 1.3 for all API calls
PII/PHI: Additional encryption layer for SSN, medical records

B. HIPAA Compliance:

Audit logs for all data access
Automatic session timeout (15 minutes)

Minimum necessary access principle
Breach notification system

Data backup and disaster recovery

C. API Rate Limiting:

// 100 requests per 15 minutes per IP

app.use(rateLimit({

 windowMs: 15 * 60 * 1000,

 max: 100

}));

8. PDF Generation

A. Prescription PDF:

GET /api/prescriptions/:id/pdf

// Use: PDFKit or Puppeteer

// Include:

- Hospital letterhead

- Doctor details and signature

- Patient information

- Medication list

- QR code for verification

B. Invoice PDF:

GET /api/invoices/:id/pdf

// Include:

- Invoice number and date

- Itemized services

- Insurance breakdown

- Payment history

- QR code for online payment

9. Email Notifications

A. SendGrid/AWS SES Integration:

// Appointment Confirmation

- Send to patient email

- Include calendar invite (.ics file)

- Reminder 24 hours before

// Prescription Ready

- Notify patient when prescription is written

- Include pharmacy instructions

// Invoice Generated

- Send invoice PDF

- Payment link

// Lab Results Available

- Notify patient to log in and view

- Security: Never email actual results

10. Reporting & Analytics

A. Dashboard Statistics API:

GET /api/reports/dashboard?role=admin&period=month

Response:

{

 totalPatients: 1250,

 activePatients: 890,

 newPatients: 45,

 totalAppointments: 320,

 completedAppointments: 280,

 revenue: 125000,

 pendingInvoices: 15,

 averageWaitTime: 12, // minutes

 patientSatisfaction: 4.5

}

B. Revenue Reports:

GET /api/reports/revenue?startDate=2025-01-01&endDate=2025-12-31

// Group by month, service type, doctor, insurance provider

// Export to CSV/Excel

🔄 INTEGRATION CHECKLIST

Frontend-Backend Connection:

1. Update API Base URL:

2. Create API Service Layer:

// src/config/api.js

export const API_BASE_URL = process.env.REACT_APP_API_URL || 'http://loca

// src/services/api.js

import axios from 'axios';

const api = axios.create({

 baseURL: API_BASE_URL,

 headers: {

 'Content-Type': 'application/json'

 }

});

// Add token to requests

api.interceptors.request.use((config) => {

 const token = localStorage.getItem('accessToken');

 if (token) {

 config.headers.Authorization = `Bearer ${token}`;

 }

 return config;

});

export default api;

3. Replace Mock Data:

// Before (Mock):

const [patients, setPatients] = useState(mockData);

// After (Real API):

useEffect(() => {

 api.get('/patients')

 .then(response => setPatients(response.data.data))

 .catch(error => console.error(error));

}, []);

📋 IMPLEMENTATION TIMELINE

Phase 1 - Foundation (Weeks 1-2)

Database schema creation
Basic CRUD APIs for Users, Patients, Doctors

Authentication system

Frontend-backend connection

Phase 2 - Core Features (Weeks 3-4)

Appointments API

Medical Records API
Prescriptions API

File upload system

Phase 3 - Advanced Features (Weeks 5-6)

Radiology & DICOM handling

CDSS AI integration
Billing & payment gateway

PDF generation

Phase 4 - Production Ready (Weeks 7-8)

Security hardening

HIPAA compliance
Performance optimization

Testing & bug fixes

Deployment

🚀 DEPLOYMENT ARCHITECTURE

Frontend (React)

 ↓ HTTPS

Load Balancer

 ↓

API Servers (Node.js/Express) [Auto-scaling]

 ↓

Database Cluster (MongoDB/PostgreSQL) [Master-Replica]

 ↓

File Storage (AWS S3)

 ↓

AI Service (Python/TensorFlow) [Separate]

Hosting Recommendations:

Frontend: Vercel, Netlify, or AWS S3 + CloudFront

Backend: AWS EC2/ECS, Google Cloud Run, or Azure App Service
Database: MongoDB Atlas, AWS RDS, or Azure Cosmos DB

Files: AWS S3, Azure Blob Storage, Google Cloud Storage

